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We discuss an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids in the
limit of small momentum. Besides accounting for the broadening of the charge peak due to two-holon exci-
tations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an
asymmetric line shape. At finite temperature the spin peak is broadened by diffusion. As an application, we
discuss the density and temperature dependence of the Coulomb drag resistivity due to long-wavelength
scattering between quantum wires.
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I. INTRODUCTION

There is theoretical consensus,1 supported by accumulat-
ing experimental evidence,2,3 that in one dimension electrons
decay into fractional excitations carrying either spin or
charge, called spinon and holon. At low energies, interacting
one-dimensional systems are described by the Luttinger
model,1 which predicts that the collective spin and charge
modes are decoupled and propagate with different velocities.
Away from the low-energy limit, spin-charge separation
holds in the sense that spinon and holon branches can still be
identified in some momentum-resolved experiments such as
angle-resolved photoemission4 but charge and spin degrees
of freedom are inevitably coupled by dispersion nonlinearity.
A direct consequence is that at finite energies spin excitations
can contribute to charge responses.5,6

Recently the effects of nonlinear dispersion in dynamical
properties of Luttinger liquids have been emphasized.7 In
particular, the interplay of band curvature and interactions is
essential for the interpretation of Coulomb drag experiments
in parallel quantum wires.8,9 As discussed by Pustilnik et
al.,10 the Luttinger model cannot account for the leading con-
tribution to the drag resistivity when there is a density mis-
match between the wires, in which case interwire back-
scattering processes are exponentially suppressed at low
temperatures. The other type of low-energy process, long-
wavelength scattering, is ineffective within the Luttinger
model because the dynamic charge-structure factor �DCSF�
S�q ,�� for small wave vector q is given by a delta function
peak at the energy of a free boson. In this approximation, the
DCSFs of two wires with different densities have no overlap
and the drag resistivity vanishes. For spinless fermions,10 it
is known that nonlinear dispersion is responsible for broad-
ening the DCSF into a rectangular line shape with width
proportional to q2.11,12 This effect restores a smooth density
dependence of the drag resistivity.

In this work we study the DCSF of spin-1/2 fermions in
the limit of small q and at zero magnetic field. Our motiva-
tion comes from the search for Luttinger liquid behavior in
experiments with vertically coupled quantum wires, in which
drag is enhanced by a smaller interwire separation and the
densities in each wire can be tuned independently.13 We are

interested in the possibility that spinons give a contribution
to the drag resistivity via spin-charge coupling at finite ener-
gies. This effect cannot be described by the Luttinger model
since it depends on violating particle-hole symmetry. In or-
der to calculate the DCSF, we follow the approach of treating
band curvature as a perturbation to the Luttinger model, and
resort to refermionization of the collective modes in the
cases where perturbation theory is singular. While the drag
response depends mostly on the spectral weight and width of
the peaks as a function of wave vector and temperature, we
also discuss other features of the DCSF that are of general
interest for the dynamics of spin-1/2 fermions. These fea-
tures could be directly probed by momentum-resolved tech-
niques, such as Bragg spectroscopy in cold Fermi gases.14

We show that at zero temperature the charge peak has a
q2-scaling width, such as in the spinless case, but there is
also a peak due to spin excitations which resembles the dy-
namic spin structure factor �DSSF� of Heisenberg spin
chains. At zero temperature, the DCSF diverges at the lower
edge of the spin peak as a power law with exponent �s−
=−1 /2+O�q2�. At finite temperature, the spin peak is broad-
ened by diffusion.

The paper is organized as follows. In Sec. II we present
the linear-response formula for the drag resistivity and dis-
cuss its relation to the problem of the DCSF of spin-1/2
fermions with nonlinear dispersion. In Sec. III, we derive the
effective bosonic Hamiltonian including irrelevant operators
associated with band curvature, some of which couple charge
and spin degrees of freedom. In Sec. IV, we describe the line
shape of the DCSF in the limit of small q at zero tempera-
ture. Finite temperature effects are also discussed. In Sec. V,
the approximation for the DCSF is applied to calculate the
density and temperature dependence of the drag resistivity.
Finally, we summarize the results in Sec. VI.

II. COULOMB DRAG AND DYNAMIC CHARGE
RESPONSE

The drag resistivity between two capacitively coupled
wires of length L is defined as the ratio
r=−�e2 /2���V2 / I1L, where V2 is the voltage induced across
wire 2 �called the drag wire� when a current I1 is driven
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through wire 1 �called the drive wire�. For the typical setup,
see Refs. 8 and 9. Let us assume clean wires �L smaller than
the mean-free path due to impurities� and temperature re-
gime kBT��vFi /L, where vFi, i=1,2, is the Fermi velocity
for electrons in each wire. The latter condition rules out finite
size effects which are known to produce oscillations in the
drag response as a function of drive voltage.15 Hereafter we
set �=kB=1. In the linear-response regime, the drag resistiv-
ity at temperature T is given by10

r =
U2

4�3�1�2T
�

0

�

dq�
0

�

d�
q2A1�q,��A2�q,��

sinh2��/2T�
, �1�

where U is the interwire Coulomb interaction, �i is the
charge density and Ai�q ,�� is minus the imaginary part of
the retarded density-density correlation function in wire i
=1,2. Equation �1� expresses the drag resistivity as a func-
tional of the dynamic density-density correlation function of
two decoupled wires. Due to Boltzmann factors, the nonzero
response comes from the overlap of A1 and A2 integrated up
to frequencies of order T. At low temperatures compared to
the Fermi energies �Fi of the wires, and neglecting interwire
backscattering, the main contribution to the integral in Eq.
�1� is due to small-q �or forward� scattering.10

Our goal is to derive an approximation for A�q ,�� in a
single wire in the limit q	kFi and �	�Fi. From this point
until Sec. IV, we will be concerned with the dynamic re-
sponse of a single wire and will omit the wire index i=1,2.
The wire index will be restored in Sec. V when we return to
Eq. �1� to compute the drag resistivity.

In order to describe the intrawire interactions, we consider
a Galilean-invariant model with electron mass m and short-
range density-density interaction potential V�x�

H = −
1

2m
�

0

L

dx
†�x
2
 +

1

2
�

0

L

dx�
0

L

dyV�x − y�n�x�n�y� .

�2�

Here 
= ��↑ ,�↓� is a two-component fermionic field and
n�x�=
†�x�
�x� is the local charge density. At zero mag-
netic field, the number of electrons with spin �= ↑ ,↓ is N↑
=N↓=N /2. The average density is �=N /L and the Fermi
wave vector is kF=�� /2. We assume the interaction poten-
tial to have a finite range R, due to screening by nearby
gates. For simplicity, we will discuss the properties of
A�q ,�� in the thermodynamic limit.

The spectral function A�q ,�� in Eq. �1� satisfies the
fluctuation-dissipation theorem

2A�q,�� = �1 − e−�/T�S�q,�� , �3�

where S�q ,�� is the DCSF given by

S�q,�� = �
0

L

dxe−iqx�
−�

+�

dtei�t�n�x,t�n�0,0�� . �4�

Since S�−q ,��=S�q ,��, hereafter we take q
0. Since we
are interested in the regime T	�F, we shall start by discuss-
ing the DCSF at T=0. The exact result for the noninteracting
case, V=0, is

S0�q,�� = �2m/q���q2/2m − �� − vFq�� , �5�

where vF=kF /m is the Fermi velocity. For V=0, the spectral
weight vanishes outside the particle-hole continuum defined
by the upper and lower thresholds ���q�=vFq�q2 /2m. As a
function of energy �, the line shape of the DCSF in this case
consists of one rectangular peak whose width is given by the
band curvature scale ���q�=q2 /m.

It is important to note that for spin-1/2 fermions the DCSF
at small q cannot be obtained by perturbation theory in the
interaction. In fact, the first-order correction to S�q ,�� has
logarithmic divergences at �����q�

�S�q,��
S0�q,vFq�

�
m�2Ṽq − Ṽ0�

�q
ln�� − �−

�+ − �
� , �6�

where Ṽk is the Fourier transform of V�x�. These divergences
signal edge singularities and are reminiscent of the result for
spinless fermions16 but there is an important difference. For
spinless fermions, the prefactor of the logarithmic divergence

is −m�Ṽ0− Ṽq� /�q; for short-range interactions, Ṽ0− Ṽq	q2,
it vanishes as q→0. In contrast, the prefactor in the spinful

case, m�2Ṽq− Ṽ0� /�q�mṼ0 /�q, diverges as q→0. The dif-
ference stems from the amplitude for s-wave scattering be-
tween electrons with opposite spin. This indicates that the

limits q→0 and Ṽ0→0 in S�q ,�� do not commute. In the

limit q	mṼ0, it is important to treat interactions exactly and
account for the effects of spin-charge separation, as we will
discuss in the following sections.

III. EFFECTIVE MODEL FOR SPIN-CHARGE COUPLING

In the regime q	mṼ0, we can treat interactions exactly
and regard band curvature as a perturbation, with q /kF play-
ing the role of a small parameter.12,17,18 In the linear disper-
sion approximation, bosonization1 of Hamiltonian �2� is stan-
dard and leads to the Luttinger model with Hamiltonian
density

H� = 2�vc�JR
2 + JL

2� +
2�vs

3
�JR

2 + JL
2� − 2�vsgJR · JL. �7�

Here JR/L �JR/L� are chiral U�1� charge 
SU�2� spin� currents,
vc �vs� is the charge �spin� velocity, and g is the bare cou-
pling constant of the marginally irrelevant backscattering op-
erator. The long-wavelength part of the charge density fluc-
tuation is

n = 2�Kc�JR + JL� , �8�

where Kc is the Luttinger parameter for the charge sector.
Galilean invariance implies Kc=vF /vc. At weak coupling,

Ṽ0	vF, we have vc�vF+ Ṽ0 /�, vs�vF, and g� Ṽ2kF
/�vF.1

In semiconductor quantum wires, typical values of Kc�0.7
have been reported.3

The charge and spin currents can be expressed in terms of
chiral bosonic fields as

JR/L = � �x�R/L
c /�4� , �9�
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JR/L
z = � �x�R/L

s /�4� , �10�

which obey the commutation relations 
�R/L
c �x� ,�x��R/L

c �x���
= 
�R/L

s �x� ,�x��R/L
s �x���= � i��x−x��. The transverse part of

the spin currents can be written as

JR/L
+ = JR/L

x + iJR/L
y =

1

2�
e+i�4��R/L

s
, �11�

JR/L
− = JR/L

x − iJR/L
y =

1

2�
e−i�4��R/L

s
, �12�

where the short-distance cutoff is set to 1.
The leading �dimension-three� perturbations to the model

in Eq. �7�, generated by the quadratic term in the electron
dispersion as well as irrelevant interactions, are

�H = �4�2/3�
�−�JR
3 + JL

3� − �+�JR
2JL + JL

2JR�

+ �−�JRJR
2 + JLJL

2� + �+�JRJL
2 + JLJR

2�

+ �3�JL + JR�JL · JR� . �13�

The last three terms in Eq. �13� couple spin and charge.
Importantly, only even powers of the spin currents are al-
lowed in �H due to SU�2� symmetry. Direct bosonization of
Hamiltonian �2� produces all terms in Eq. �13�, except for the
�3 term. This does not mean that �3 vanishes �such term is
allowed by symmetry� but rather that it must be generated at
second order in the electron-electron interaction.

In fact, we can derive phenomenological relations for all
coupling constants. The exact parameters �� can be related
to the change of vc and Kc under a shift of chemical potential
�. The calculation is analogous to the spinless case in Ref.
12; simplifying for the case of Galilean invariance where
Kc=vF /vc and using the result for the compressibility
�� /��=2Kc /�vc, we find

�− =
1

2�Kc


 1

m
+ vc

�vc

��
� , �14�

�+ =
3

2�Kc


 1

m
− vc

�vc

��
� . �15�

Likewise, an infinitesimal chemical potential shift ��
modifies the spin velocity vs by giving a finite expectation
value to the charge currents �JL�= �JR�=���Kc / �2�vc� in the
�� terms in Eq. �13�

4�2

3
��− + �+��JR��JR

2 + JL
2� �

2�

3
�vs�JR

2 + JL
2� . �16�

This relation fixes the sum

�− + �+ = �vc/�Kc� � vs/�� . �17�

Moreover, Galilean invariance requires that the charge cur-
rent and momentum operators for model in Eqs. �7� and �13�
be proportional to each other.5 The momentum operator is
obtained from the energy-momentum tensor; its density is

P =
2kF

�Kc

�JR − JL� + 2��JR
2 − JL

2� +
2�

3
�JR

2 − JL
2� . �18�

The current density J�x� is obtained from the continuity
equation for the charge density

�tn�x� = − i� dx�
n�x�,H��x�� + �H�x��� = − �xJ�x� .

�19�

We then impose the condition J�x�=P�x� /m for a Galilean-
invariant system. The relation between the coefficients of the
spin contributions to P�x� and J�x� leads to

�− − �+ = 1/��Kcm� . �20�

Equations �17� and �20� allow one to determine �� by sim-
ply measuring the spin dispersion at low energies.

Finally, the coefficient �3 is related to the variation in the
backscattering coupling constant vsg under a change of the
chemical potential

�3 = −
3vc

2�Kc

��vsg�
��

. �21�

Since g is marginally irrelevant, we expect �3 to be more
irrelevant than the other coupling constants in Eq. �13�, in
the sense of logarithmic corrections to scaling. This will be
discussed in the following section.

Renormalization-group flow with irrelevant operators

All the operators in Eq. �13� are irrelevant and have the
same scaling dimension x=3. The renormalization-group
�RG� equations for the irrelevant coupling constants 
includ-
ing the marginal g term in Eq. �7�� can be derived by inte-
grating out high-energy modes in the partition function as
one lowers the ultraviolet momentum cutoff �. Following
the notation of Ref. 19, we rescale the coupling constants by
the cutoff and introduce �̃�=���, �̃�=���, and �̃3=��3.
To obtain the quantum corrections to scaling, we use the
operator product expansion �OPE� of the spin currents1

:JL
a�z� � JL

b�0�: 	
�ab

8�2z2 +
i�abc

2�z
:JL

c�0�: ,

:JR
a�z̄� � JR

b�0�: 	
�ab

8�2z̄2 +
i�abc

2�z̄
:JR

c �0�: , �22�

where z=vs�+ ix and z̄=vs�− ix, with � the imaginary time,
and �abc is the Levi-Civita antisymmetric tensor. 
The normal
ordering symbol � is implicit in the Hamiltonians �7� and
�13�.� The OPE for the scalar currents is simply

:JL�x,�� � JL�0,0�: 	
1

8�2�vc� + ix�2 + ¯ ,

:JR�x,�� � JR�0,0�: 	
1

8�2�vc� − ix�2 + ¯ . �23�

We integrate out high-energy modes in the shell 1 /�
� �z��1 /�� with ��=�e−d�, d�	1. This choice of cutoff is
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rotationally invariant for the spin modes but elliptical for the
charge modes. In order to get a nonzero contribution to the
RG equation after integrating out the shell in the �x ,�� plane,
it is important to contract both right and left movers at the
same time.

In the presence of the dimension-three operators, the ve-
locities, Luttinger parameter and chemical potential are
renormalized, but flow to their fixed-point values in the low-
energy limit. This flow is already taken into account if we
use the exact parameters. The interesting RG flow here is
given by the coupled equations for �̃3 and g

dg

d�
= − g2, �24�

d�̃3

d�
= − �1 + 2g��̃3. �25�

There are no corrections to the scaling of �̃� and �̃� to
second order in the coupling constants. Equation �25� can be
rewritten as

d�3

d�
= − 2g�3. �26�

On the right-hand side of Eqs. �24� and �26� we have terms
of zeroth order in �. It follows that

d ln g

d�
= − g =

1

2

d ln �3

d�
. �27�

The solution is of the form

�3���/
g����2 = const. �28�

The scaling of the marginal coupling constant is the familiar
one

g��� =
g

1 + g ln��0/��
, �29�

where �0 is the initial value of the cutoff. As a result, for
positive g	1 and for �	�0e−1/g the effective g��� van-
ishes logarithmically as g���	1 / ln��0 /��. If the bare g at
high energies is of order 1, the perturbative result in Eq. �29�
is still valid if g is interpreted as g��0� at some scale �0
	kF such that g��0�	1. In any case, we obtain g���
	1 / ln��0 /�� in the low-energy limit.

More interestingly, Eq. �28� implies

�3��� =
�3


1 + g ln��0/���2 . �30�

Therefore, �3��� vanishes as �3���	1 / ln2��0 /�� as �
→0. This will be important in Sec. IV D when we compare
leading logarithmic corrections to the DCSF due to g and �3.

IV. DYNAMICAL CHARGE STRUCTURE FACTOR

In the bosonized form of Eq. �8�, the DCSF is given by

S�q,�� = − 8Kc Im Cret�q,�� , �31�

where Cret�q ,�� is the retarded correlation function for the
charge current JR+JL, which can be obtained by analytic

continuation from the Matsubara correlation function

C�q,i�� = �
�,�=R/L

C���q,i�� , �32�

C���q,i�� = − �
0

L

dxe−iqx�
0

�

d�ei�� � �J��x,��J��0,0�� .

�33�

Equation �33� involves the charge boson propagator. Within
the Luttinger model, the charge boson is free and we have
CLL

0 =CL, CRR
0 =CR, and CLR

0 =CRL
0 =0 with

CR/L�x,�� � �JR/L�x,��JR/L�0,0�� =
1

8�2

1

�vc� � ix�2 .

�34�

Taking the Fourier transform, we obtain

CR/L�q,i�� =
1

4�

�q

i� � vcq
. �35�

As a result, the DCSF calculated in the linear dispersion
approximation is given by

S�q,�� = 2Kcq��� − vcq� . �36�

That the DCSF is given by a delta-function peak at the en-
ergy of the free charge boson follows from spin-charge sepa-
ration and Lorentz invariance of the Luttinger model. This
should be contrasted with the free-electron result in Eq. �5�,
where the peak associated with particle-hole excitations has a
q2 broadening due to the curvature of the dispersion about
the Fermi points.

A. Width of the charge peak

We can calculate S�q ,�� beyond the Luttinger liquid re-
sult by analyzing the effects of the boson-boson interactions
in Eq. �13�. First, let us consider the broadening of the charge
peak. The charge-only �� terms are familiar from the spin-
less case.12 They account for the decay of one charge boson
into two charge bosons. In particular, �− is a three-leg vertex
in which one right- �left-� moving boson decays into two
right- �left-� moving bosons, thus coupling the single-boson
state to degenerate multiboson states. It is known that pertur-
bation theory in �− is badly divergent but can be dealt with
by refermionization.7,11 Near the charge mass shell, ��vcq,
we introduce a spinless holon field �c,R such that �c,R

† �c,R
=�2JR. The �− term in Eq. �13� then maps onto a parabolic
dispersion about the holon Fermi point

4�2

3
�−JR

3 → −
�−

2�2
�c,R

† �x
2�c,R. �37�

It can be argued that �− determines the exact broadening of
the DCSF to order q2 because it gives rise to the bosonic
diagrams that are most singular at �=vcq.12 Within the ap-
proximation of neglecting the other dimension-three opera-
tors, the charge sector of the Luttinger model plus the �−
term refermionizes into a free fermion model with dispersion
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�c�k��vck+�−k2 / �2�2�, for k measured from the right
Fermi point. The support of the charge peak in the DCSF is
then given by the spectrum of excitations with a single
holon-antiholon pair. Due to the curvature of the dispersion,
these excitations define a continuum bounded by

�c��q� = vcq � �−q2/2�2. �38�

Therefore, at order q2, the charge peak has a free-fermionlike
line shape

S�q,�� �
2�2Kc

�−q
�
�−q2

2�2
− �� − vcq�� . �39�

The parameter �2 /�− can be interpreted as a renormalized
holon mass.

It is interesting that the limits q→0 and Ṽ0→0 in the

width do not commute. For q	mṼ0	kF, we have from Eq.
�14� that ��c�q�=�−q2 /�2�q2 / ��2m�. The �2 factor makes
the charge peak narrower than the free electron result in Eq.

�5�.20 In particular, this means that in the regime q	mṼ0 the
holon dispersion �which shows up, for instance, in the single-
electron spectral function� should not be regarded as a
smooth continuation of the electron dispersion. An important

crossover happens at q	mṼ0.
The result in Eq. �38� can be directly compared with the

exact width of the two-holon continuum for an integrable
model, such as the Yang-Gaudin model.21 We have numeri-
cally solved the standard Bethe ansatz integral equations for
the spectrum of elementary excitations of the Yang-Gaudin
model. We verified that the width defined as the difference
between the maximum and minimum exact energies of a
particle-hole excitation in the holon Fermi sea for momen-
tum q	m�vc−vs� agrees with Eq. �38�, including the factor
of �2 and with �− calculated from the phenomenological
relation in Eq. �14�.

Corrections to Eq. �39� due to residual holon-holon inter-
actions are higher order in q. These corrections include a
high frequency tail at order �+

2, analogous to the spinless
case,10,12,18 and possible asymmetries of the charge peak near
the edges of the two-holon continuum, due to x-ray edge-
type singularities.16 But before we discuss the behavior near
�c��q�, we turn to the contributions from the spin operators
in Eq. �13�.

B. Spin peak

The �� operators in Eq. �13� allow for decay of the
charge boson into two spin bosons moving in the same di-
rection and carrying the total energy ��vsq. The corre-
sponding three-leg vertices are illustrated in Fig. 1. As noted
in Ref. 18, this process gives rise to a narrow peak in the
DCSF centered at �=vsq which corresponds to a charge-
carrying spin singlet excitation. Let us calculate the correc-
tion to the charge boson propagator in Eq. �33� using second-
order perturbation theory in ��. For instance, the O��−

2�
correction to CRR is

�CRR
�− �q,i�� = 32�4�−

2
CR�q,i���2�RR�q,i�� , �40�

where we made use of the identity: JR/L
2

ª3�JR/L
z �2 and intro-

duced the boson self-energy

����q,i�� = −� dxe−iqx�
0

�

d�ei��S��x,��S��x,�� . �41�

Here S�, �=R ,L, are the free chiral spin boson propagators

�abSR/L�x,�� = �JR/L
a �x,��JR/L

b �0,0�� =
�ab

8�2

1

�vs� � ix�2 .

�42�

In momentum and frequency space, we have

SR/L�q,i�� =
1

4�

�q

i� � vsq
. �43�

We then calculate �RR that appears in Eq. �40�

�4��2�RR�q,i�� = − �
0

� dq�

2�
�

−�

� d��

2�

q�

i�� − vsq�

�
q − q�

i� − i�� − vsq + vsq�

=
q3

12�

1

i� − vsq
. �44�

Adding up all second-order contributions from �− and �+ and
taking the imaginary part of the retarded self-energy, we
obtain18

�S�q,�� � �Kc/12���− + �+�2q3��� − vsq� , �45�

where

�� = ��/�vc � vs� . �46�

This shows that the DCSF exhibits a narrow peak with spec-
tral weight of order q3 at the spin mass shell �=vsq.

The question then is how the spin peak in Eq. �45� is
broadened by treating band curvature operators to higher or-
ders. We first note that the condition q	m�vc−vs� ensures
that the spin peak is well separated from the charge peak. By
analogy with the discussion in Sec. IV A, we expect that the
width of the spin peak is set by decay processes that couple
degenerate states with multiple spin bosons propagating in
the same direction. However, in contrast with the case of the
charge peak, in Eq. �13� there is no dimension-three spin-
only chiral operator that would be equivalent to a parabolic
dispersion about spinon Fermi points. Thus the broadening

J
a

R
J
a

R

JR

κ+κ
−

JL

J
a

R
J
a

R

FIG. 1. Decay of a charge boson �propagators denoted by wig-
gly lines� into two right-moving spin bosons �propagators denoted
by straight lines�. This process leads to a spin peak in the dynamic
charge-structure factor.
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of the spin peak must come from higher-order on-shell decay
processes. In fact, the leading irrelevant spin-boson interac-
tions allowed by symmetry are quartic in the spin currents

�−�JR/L
2 �2,�+JR

2JL
2,�1�JR · JL�2,�2JR · JL�JR

2 + JL
2� . �47�

In principle, these operators are present as perturbations to
model in Eq. �7� plus Eq. �13�. They are also generated by
“projecting” into a subspace with energy ��−vsq�	 �vc
−vs�q and integrating out “high-energy” charge bosons. The
spin part of the resulting model for ��vsq is equivalent to
the low-energy effective model for the XXZ spin chain at
zero magnetic field.22

Perturbation theory in the dimension-four operators in Eq.
�47� is highly singular for ��vsq.12 Unfortunately, it is not
known how to sum up the expansion in this case. Refermi-
onization does not solve the problem because the effective
fermionic model with dimension-four operators contains not
only band curvature terms, such as �†�x

3�, but also intra-
branch �i.e., which do not mix R and L� residual interactions
of the form �†�x��x�

†�, which also contribute to the broad-
ening at leading order in q. Nevertheless, simple power
counting tells us that the width of the spin peak should scale
like ��s�q�	O�q3�, rather than O�q2�. This is consistent
with the result for the DSSF of the XXZ model at zero
field,12 where it is known that the spectral weight is domi-
nated by two-spinon excitations and the exact spinon disper-
sion takes the form �s�k�=vs sin�k��vs�k−k3 /6+¯� about
the spinon Fermi points.

C. Edge singularities of the spin peak

To be able to say more about the line shape of the spin
peak, we refermionize the spin currents into interacting spin-
less fermions. This is equivalent to inverting the Jordan-
Wigner transformation in the continuum and writing down a
SU�2� symmetric model for the fermions associated with the
spin excitations. In other words, the idea is analogous to
deriving the bosonic Hamiltonian for the Heisenberg spin
chain by starting from the XXZ model and tuning the Lut-
tinger parameter to the SU�2� symmetric value �a strongly
interacting limit with Luttinger parameter K=1 /2�, as op-
posed to deriving the bosonic Hamiltonian directly from the
Hubbard model �in which case the spin bosons come out
noninteracting with Ks=1�.1,23 The new ingredient here is
that the spin excitations are coupled to gapless charge modes.

The mapping of the bare chiral fermion densities to the
spin currents in Eq. �7� is �s,R/L

† �s,R/L= �3JR/L
z −JL/R

z � /2, as fol-
lows from a canonical transformation for the spin bosonic
fields. Spin inversion symmetry implies that the dispersion of
these fermionic spinons is particle-hole symmetric. We as-
sume that the exact dispersion about the right Fermi point is
given by

�s�k� � vsk − �k3 �48�

with the unknown parameter �
0. We expect that � stems
from dimension-four operators in the bosonic model and is
of order 1 / �mkF�.

In terms of fermions, the operator JR
2 that gives rise to the

spin peak in Eq. �45� creates particle-hole pairs on the spinon

Fermi sea. We can study the behavior near the edges of mul-
tispinon continua using the methods of Refs. 16 and 24. The
absolute lower threshold �s−�q�=�s�q� is defined by an exci-
tation with a particle at the Fermi surface and a hole at mo-
mentum −q below the Fermi point. For �−�s−�q�	�q3, we
define a “deep spinon” subband by expanding16

�sR 	 �sr + e−iqxds
†, �49�

where �sr
† creates low-energy spinons near the right Fermi

point and ds
† creates a hole at momentum −q below the Fermi

point. This leads to the quantum impurity model

Hs
− = H� + ds

†��s− − iu�x�ds − �VrJr
z + VlJl

z�ds
†ds

+ 2�q��−�Jr + �+�Jl�ds
†ds, �50�

where u�vs−3�q2 is the velocity of the ds hole. The spin-
only part of the quantum impurity model given by the first
line in Eq. �50� is derived as explained in Ref. 24, by apply-
ing the mode expansion in Eq. �49� to a generic model of
interacting spinless fermions with the dispersion in Eq. �48�.
The second line stems from the coupling of the energy den-
sity of the spinon field to the bosonized holon density. Here
Jr/l stand for the bosonized charge currents with cutoff at
energy scale 	�q3, which allows the “high-energy” spinon
to emit low-energy charge bosons such that the energy re-
mains near �=�s−�q�. Note that in this procedure we keep
only marginal operators in the quantum impurity model, as
irrelevant operators can only introduce subleading power-law
singularities at the threshold. This is not to be confused with
the presence of irrelevant operators in the original bosonic
model in Eq. �13�, which are essential to argue for the non-
linearity of holon and spinon dispersions and for the very
existence of the deep spinon threshold.

Rather than keep track of the parameters in the derivation
of model in Eq. �50�, it is more useful to introduce the model
phenomenologically �it contains all the marginal operators
allowed by symmetry� and to fix the coupling constants by
symmetry and phenomenological relations. The parameters
Vr/l can be fixed by realizing that the same model in Eq. �50�
can be used to calculate the lower edge singularity of the
DSSF. This is because the operator JR/L

z that enters the lon-
gitudinal spin-spin correlation function also creates two-
spinon excitations in the fermionic representation, and the
lower threshold of the support of the DSSF is also given by
the deep spinon excitation. The important constraint comes
from SU�2� symmetry, which imposes that the exponents for
the longitudinal and transverse DSSF must coincide.25 We
reproduce this argument in detail in the Appendix.

The coupling constants ��� in Eq. �50� are related to exact
phase shifts at the holon Fermi points due to the creation of
a high-energy spinon. We want to show that at small q these
are also related to the band curvature parameters in Eq. �13�.
It is easy to show that an infinitesimal change in the chemical
potential �� gives rise to a shift in the energy of the high-
energy spinon ��s−=���Kc��−�+�+��q /vc. This allows us to
write
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�−� + �+� =
vc

�Kcq

��s−

��
. �51�

But from the exact spinon dispersion we have �s−=vsq
+O�q3�, hence

�−� + �+� =
vc

�Kc

�vs

��
+ O�q2� . �52�

The second relation for �−�−�+� can be obtained by imposing
Galilean invariance to Hamiltonian �50�. Similarly to the dis-
cussion in Sec. III, we compare momentum and current op-
erators. The contribution from the spin-charge coupling
terms in Eq. �50� to the current density �defined from the
continuity equation for the charge density� is

Jd = �Kcq��−� − �+��ds
†ds. �53�

Therefore, if we consider an excited state in which we create
a particle-hole pair of spinons with a deep hole at momentum
kF−q and a particle at kF, the current of this state is
�Kcq��−�−�+��. Demanding that this current be equal to the
momentum q of the state divided by the mass m, we find

�−� − �+� = 1/��Kcm� . �54�

Comparing Eqs. �52� and �54� with Eqs. �17� and �20�, we
conclude that

��� = �� + O�q2� . �55�

Using the model in Eqs. �50� and �55�, we can show �see
Appendix� that the DCSF diverges at the lower edge of the
two-spinon continuum as S�q ,��	��−�s−��s− with expo-
nent

�s− = − 1/2 + ��−
2 + �+

2�q2/2 + O�q4� , �56�

where �� is defined in Eq. �46�. Therefore, as q→0, the
exponent approaches the universal value −1 /2, which de-
pends only on SU�2� symmetry. The q2 correction to �s− is
due to the coupling to gapless charge bosons with energy
	�q3. This exponent should be contrasted with the square-
root singularity of the DSSF for the Heisenberg model.26 We
note that �s− differs from the corresponding exponent for
SU�2� bosons at the magnon threshold, �m=−1+O�q2�.27,28

The upper edge of the two-spinon continuum is given by
�s+�q�=2�s�q /2�. As discussed in Ref. 24, near this edge the
spectral weight is suppressed by resonant scattering between
spinons with equal velocity. If most of the spectral weight of
the spin peak is due to two-spinon excitations, the width can
be defined as

��s�q� = �s+�q� − �s−�q� = 3�q3/4. �57�

While the upper threshold of two-spinon continuum in the
integrable XXZ model exhibits a square-root cusp, here we
expect that the upper threshold of the two-spinon continuum
is rounded by higher order �in q� processes, at least for non-
integrable models.

D. Smearing of the charge peak: decay rate
of the charge boson

In general, we expect S�q ,�� to have nonzero spectral
weight anywhere above the lower threshold �s−�q�. A tail
between the spin and charge peaks is generated due to the
decay of the charge boson into a pair of L and R spin bosons,
as depicted in Fig. 2. The effective vertex is calculated from
the three-point function

G�k1,k2,k3� � ��JL + JR��k1�JL
a�k2�JR

b�k3��

=
4�2

3
�3

eff�ab�CL + CR��k1�SL�k2� � SR�k3�

��2��2��k1 + k2 + k3� , �58�

where k= �k ,�� is a two-momentum. To first order in �� ,�3

leading order in q /kF in the contribution to S�q ,���, there
are two contributions to the effective vertex, one from �3 and
the other from a combination of �� and g. We find

�3
eff = �3 +

3

2
g��− + �+� . �59�

Away from the spin and charge mass shells, i.e., for
��−vsq����s�q� and ��−vcq����c�q�, the tail of the spin
peak can be calculated by second-order perturbation theory
in �3

eff. Similarly to the calculation in Sec. IV B, we obtain a
correction to the charge boson propagators

�C��
�3

eff
�q,i�� = −

16�4

3
��3

eff�2C��q,i��C��q,i���RL�q,i�� ,

�60�

where � ,�=R ,L and �RL�q , i�� is the self-energy with one
right-moving and one left-moving spin boson, as defined in
Eq. �41�. The calculation of �RL yields12

�RL
ret �q,�� =

1

32�3� �2

2vs
−

�2 − vs
2q2

8vs
3

� log
�vsq�2 − �� + i��2

4vs
2�2 � . �61�

While the real part is ultraviolet divergent, the imaginary part
is not. The imaginary part gives the tail in the DCSF

�S�q,�� �
Kc��3

eff�2

24vs
3 � vcq

2

�2 − vc
2q2�2

��2 − vs
2q2� �62�

for �
vsq and ��−vcq���−q2.
At this point, we recall that both g and �3 that appear in

the amplitude for �3
eff scale logarithmically with the infrared

J
a

R

κ
−

JR

J
a

L

g

J
a

R

JR

J
a

L

κ3

J
a

R

JR

J
a

L

g

κ+

FIG. 2. Processes that contribute to the effective vertex �3
eff in

Eq. �59� to leading order in dimension-three operators. The decay of
the charge boson into a pair of right- and left-moving spin bosons
leads to a tail in the charge-structure factor for �
vsq.
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cutoff �see Sec. III�. Within RG improved perturbation
theory, the bare g and �3 in Eq. �59� are replaced by the
renormalized ones in Eqs. �29� and �30�, with cutoff set by
the small momentum �	q. In the long-wavelength limit,
such that g�q�	1 / ln�kF /q�	1, we have

g�q� 	 1/ln�kF/q� , �63�

�3�q� 	 ��3/g2�/ln2�kF/q� . �64�

At leading logarithmic order, we can drop the contribution
from �3 in �3

eff�q� and Eq. �62� becomes

�S�q,�� �
3Kc
g�q��2

32vs
3 �vc��− + �+�q2

�2 − vc
2q2 �2

��2 − vs
2q2� .

�65�

The DCSF was calculated by similar methods in Ref. 18
but the tail between the spin and charge peaks was not ob-
tained because backscattering processes �g and �3 in our no-
tation� were neglected.

The presence of the tail means that the charge peak dis-
cussed in Sec. IV A is inside a continuum of spin excitations.
The coupling to the continuum results in a decay rate for the
charge excitations. The imaginary part of the self-energy �RL
can be absorbed into the charge boson propagator in the form

CR/L
ret �q,�� =

1

4�

�q

� � vcq + i/�c
, �66�

where �c
−1�q� is the decay rate given by

1

�c
=

���3
eff�2�vc

2 − vs
2�q3

192vs
3 . �67�

In the limit g�q�	1 / ln�kF /q�	1, we obtain

1

�c
=

3
g�q��2���− + �+�2�vc
2 − vs

2�q3

256vs
3 . �68�

For q	m�vc−vs�, the decay rate in Eq. �68� is smaller than
��c�q�	q2, which is due to decay of the charge boson
within the charge sector �see Sec. IV A�. However, �c

−1 is
important because it is responsible for rounding off the edges
of the charge peak. This can be confirmed by calculating the
decay rate for a single high-energy holon—a dc particle in
the quantum impurity model for the edges of the two-holon
continuum, similar to the calculation in Ref. 29 for the spin-
less case. The decay rate is due to the perturbation

�H3 	  3dc
†dc�x�R

s �x�L
s . �69�

The parameter  3 gives the amplitude for a process in which
a holon scatters off two spinons moving in opposite direc-
tion. This is not a three-electron scattering process and, in
principle,  3�0 even for integrable models. Using the result
in Eq. �5.8� of Ref. 29, we obtain

1

�c
!

� 3�2�vc
2 − vs

2�
��q��3

vc
3 , �70�

where ��q� is the cutoff of the high-energy subband. Setting
��q�	q, we recover the momentum and interaction depen-

dence of the decay rate in Eq. �68� if we assume that  3 does
not vanish as a power law of q in the limit q→0. From
comparison with Eq. �67�, we expect  3!�3

eff. This should be
contrasted with the spinless case, where the coupling con-
stant in Eq. �5.13� of Ref. 29 has to vanish like q2 because of
statistics, since there is no s-wave scattering for spinless fer-
mions. For the spinful case, statistics alone does not imply
that the amplitude  3 vanishes as q2 or high powers of q.

Note also that the result for 1 /�c in Eq. �68� is nonpertur-
bative in the electron-electron interaction, since for q

	mṼ0	kF, we have �c
−1	g2Ṽ0q3 /kF

2 , which is third order in
the interaction strength. Furthermore, this result implies that,
even for an integrable model, the power-law singularities16 at
�c� are removed at order q3. The same decay rate 1 /�c
rounds off the singularity at the holon mass shell in the elec-
tron spectral function.30 This is remarkably different from the
spinless case, where it is believed that integrable models can
have exact singularities above the lower threshold because
the decay rate of a high-energy particle may vanish exactly.29

We note that if the phenomenological relations Eqs. �17�
and �21� are valid for the running coupling constants and we
substitute them in Eq. �59�, we find

�3
eff = − �3/2�vcvsKc

−1/2 � g/�� . �71�

At low energies, g���	g��0� / 
1+g��0�ln��0 /���. It is not
clear how imposing the phenomenological relations at all
energy scales can be reconciled with the result from the RG.
It is important for our results in Eqs. �65� and �68� that even
if �g /��=0 at some energy scale, the effective vertex �3

eff

will be generated by the RG flow because �3 and g scale
differently, and the leading logarithmic dependence is due to
the g term in Eq. �59�.

Finally, putting together all the pieces, we construct the
final picture for the DCSF at zero temperature in Fig. 3.
Note, in particular, that there is only a rounded threshold at
���c−.

ωs−

ωs+

ωc+

ωc−

ωc− ωc+ωs+ωs− ω

ω

q

S(q, ω)

∼ (ω − ωs−)µs−

FIG. 3. �Color online� Schematic excitation spectrum �inset on
the upper right corner� and line shape �main figure� for the DCSF of
spin-1/2 fermions at small q. The dashed lines in the �q ,�� plane
represent the linear dispersion of charge and spin modes in the
Luttinger model. The two-holon and two-spinon continua are rep-
resented by blue and yellow regions bounded by �c��q� and
�s��q�, respectively. At zero temperature and in the regime q
	m�vc−vs�, the line shape of S�q ,�� �solid red line in the main
figure� has well defined peaks inside the two-holon and two-spinon
continua. At finite temperature ��s�q�	g2T	vcq, diffusion broad-
ens the spin peak into a Lorentzian �dashed green line�.
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E. Finite-temperature effects

We now discuss the effects of finite temperature on the
broadening of the charge and spin peaks in the DCSF. This
will be important to compute the temperature dependence of
the drag resistivity in Eq. �1�.

We consider the regime where both temperature and band
curvature energy scale are small compared to the scale of
spin-charge separation: T	 �vc−vs�vc /�− and q	 �vc
−vs� /�−. Assuming that vc, vs, and vc−vs are all on the order
of vF and 1 /�− is on the order of m, these conditions mean
roughly T	TF=mvF

2 /2 and q	kF. This is the regime in
which we may expect the spin and charge peaks to remain
well separated. Neglecting the overlap between the spin and
charge peaks, the line shape of the charge peak can be ap-
proximated by the finite temperature result for the imaginary
part of the density-density correlation function for free fer-
mions with mass �2 /�− �Refs. 10 and 17�

A�q,�,T� �
�2Kc

�−q

nF�w+� − nF�w−�� , �72�

where nF���=1 / �1+e�/T� is the Fermi-Dirac distribution
function and w��
�����c /2�2− �vcq�2� / �2��c�, with ��c
=��c�q�=�−q2 /�2. The width of the charge peak at finite
temperature is then of the order of max��−q2 ,�−qT /vc�.

The calculation of the width of the spin peak is more
complicated because we do not have an approximation in
terms of noninteracting spinless fermions. For the purpose of
calculating the drag resistivity in Eq. �1�, we are only inter-
ested in whether for fixed small q and at low temperature the
spin peak can become broader than the charge peak. On the
one hand, the broadening due solely to band curvature must
be of order ��q2 /vs�T for T	vsq. As long as q ,T /vs
	m�vc−vs� ,�− /�, this is small compared to the broadening
of charge peak. On the other hand, thermal effects have a
stronger effect on spin excitations because the latter are
damped by diffusion.31,32

Recall that the spin peak stems from the self-energy with
two spin bosons propagating in the same direction �see Fig.
1�. We can calculate the finite-temperature broadening by
neglecting band curvature operators and applying perturba-
tion theory in the marginally irrelevant operator g in Eq. �7�.
As we did in Sec. IV D, we neglect the �3 vertex in the
leading logarithmic approximation. To order ���g�2, there
are two types of diagrams in the self-energy for the charge
boson, as illustrated in Fig. 4. The first type amounts to a
self-energy correction to the spin boson propagator. The

transverse part of the perturbation, −�vsg�JL
+JR

− +H.c.� gives
rise to a nonzero imaginary part of the retarded self-energy,
which can be calculated following Ref. 33. We can sum up
the series for this type of diagram by defining the dressed
spin propagator

S̃R�q,i�� =
1

4�

q

i� − vsq − "�q,i�,T�
. �73�

The other type of diagram 
Fig. 4�b�� is a vertex correction.
Since the thermal broadening of the spin peak is already
obtained within the approximation of keeping only self-
energy-type diagrams such as the one in Fig. 4�a�, we will
make the approximation of neglecting vertex corrections. By
doing this, the two-spin-boson correlation function becomes

�4��2�RR�q,i�� = − �
−�

� dq�

2�
T�

i�n

S̃R�q�,i�n�

�S̃R�q − q�,i� − i�n�

� �
−�

� dq�

2�

q��q − q��
i� − vsq − "q� − "q−q�

� 
nB�vsq�� − nB�vsq� − vsq�� , �74�

where nB���=1 / �e�/T−1� and "q="q�T�="�q ,vsq ,T�. The
decay rate for the spin boson at finite temperature is the
well-known spin current relaxation rate31

1

�s�T�
= − Im "q

ret �
�

2

g�T��2T , �75�

where g�T��g / 
1+g ln�TF /T��, with TF	mvF
2 , is the cou-

pling constant at scale T. The finite temperature result for the
spin peak in this approximation is then

�A�q,�,T� �
Kc

48�

��− + �+�2q3F�q,T��s

1 + 
�� − vsq��s/2�2 , �76�

where

F�q,T� = 6�
−�

�

duu�1 − u��nB�vsqu� − nB
vsq�u − 1���

�77�

such that F�q ,T→0�=1. Since we neglected band curvature
effects in the spin boson propagator, this approximation is
only valid for 1 /�s�T���q3. In Eq. �74�, we also assumed
1 /�s�T�	vsq. Therefore we expect that the line shape of the
spin peak at finite temperature be well described by a Lorent-
zian for a range of q that scales linearly with temperature,
q	T /vs, such that T /g�T�	 �vs

3 /��1/2.
More generally, for fixed q there is a crossover tempera-

ture T� given by the condition 1 /�s�T��	�q3 at which the
line shape of the spin peak goes from highly asymmetric
�with a peak near the zero-temperature threshold� below T�

to approximately Lorentzian in the diffusion-dominated re-
gime above T�.

g

 !"
g

g

g

 #"

FIG. 4. Diagrams at O���
2 g2� in the self-energy for the charge

boson: �a� self-energy correction to the spin boson propagator and
�b� vertex correction. The bubble with multiple lines denotes the

correlation function for the operator JR
+JL

−	ei�4���R
s −�L

s �, following
Ref. 33.
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V. APPLICATION TO THE DRAG RESISTIVITY

Finally, as an application of our results for the DCSF, in
this section we will discuss the density and temperature de-
pendence of the drag resistivity in Eq. �1�. Here we restore
the index i=1,2 for properties of the drive wire and drag
wire, respectively. Note that Eq. �1� is symmetric under the
exchange of drive and drag wires. We may then assume
vc1#vc2. We envision an experiment in which the electron
density of the drag wire is varied while the one in the drive
wire is kept fixed. In principle, this could be achieved with
vertically coupled wires whose densities are tuned indepen-
dently by top and back gates. We can think that the sharply
peaked DCSF of the drive wire is the reference for integrat-
ing Eq. �1� in the �q ,�� plane, and approximate

r �
U2

4�3�1�2T
�

0

�

dq
q2

sinh2�vc1q/2T�

� �
0

�

d�A1�q,��A2�q,�� . �78�

Clearly, the forward scattering contribution to the drag
resistivity is maximum for ideal density matching, vc1=vc2,34

in which case it is dominated by the overlap of the charge
peaks of the two wires over modes with ��vciq	T	TF.
The temperature dependence in this case is the same as for
spinless fermions,10 r	T2 for m�vc1

2 −vc2
2 �	T	TF. Also like

the result for spinless fermions, a much weaker response, r
	T5, is obtained for general density mismatch in the regime
T	m�vc1

2 −vc2
2 �, from the overlap of the charge peak for one

wire with the tails of the DCSF for the other wire.
The new effect due to the spin degree of freedom is re-

lated to the presence of a spin peak in the DCSF illustrated in
Fig. 3. It suggests that the drag resistivity can be enhanced
when the electron densities in the wires are rather different
but the charge peak of one wire overlaps with the spin peak
of the other wire. This happens over an extended region in
the �q ,�� plane if vc1=vs2. The interpretation is that under
this condition holons in wire 1 can efficiently scatter off
spinons in wire 2, which in their turn transfer momentum to
holons in the same wire.

Let us discuss the temperature dependence of the drag
resistivity when vc1=vs2. We are interested in the regime T
	mvc1�vc2−vc1�, where spin-charge separation may be mea-
surable. According to the result in Sec. IV E, the spin peak
�A�q ,� ,T� for values of q that scale linearly with T assume
a Lorentzian line shape at low temperatures such that
T /g2�T�	 �vs2

3 /�2�1/2. The width of the charge peak for wire
1 for q	T /vs2 is of order �−,1T2 /vs2vc1. If the temperature is
also low enough that T / 
g2�T��2	vc1vs2 /�−,1	TF, the spin
peak for wire 2 is broader than the charge peak for wire 1.
Using Eq. �72� for wire 1 and Eq. �76� for wire 2, we find
that in this regime the drag resistivity in Eq. �78� scales like
r	T5 / 
g2�T��2. However, if the value of g2�T� is small even
at intermediate temperatures, there will be, in general, a tem-
perature regime g2�vs2

3 /�2�1/2	T	mvc1�vc2−vc1� where dif-
fusion is not effective, in the sense that for q	T /vs2 the
broadening of the spin peak due to diffusion is smaller than
the one due to band curvature. In this case, the spin peak for

wire 2 is narrower than the charge peak for wire 1 for the
same value of q	kFi. Therefore, the integral in Eq. �78� can
be evaluated by considering that the entire spectral weight of
the spin peak is inside the charge peak. In this regime, the
drag resistivity in Eq. �78� scales like r	T4. In summary

r 	�T5 ln2TF

T
T 	 g2�T���vs2�3

�2
,
g2�T��2TF

T4 g2��vs2�3

�2
	 T 	 mvc1�vc2 − vc1� .�

�79�

Notice that in the low-temperature limit diffusion suppresses
the drag by making the spin peak broader than the charge
peak. Nevertheless, even in the spin-diffusion regime the
smallness of g2�T�	1 / ln�TF /T� makes the drag larger than
the background contribution from the tails of the DCSF,
which scales like r	T5, as discussed above.

In order to compute the expression in Eq. �78�, we have

used the same strength of the electron-electron interaction Ṽ0

and Ṽ2kF
for both wires. We estimated the parameters of the

DCSF in each wire using the phenomenological relations in
Sec. III, expanding to first order in the interaction. The finite
temperature Ai�q ,�� are approximated by the sum of a domi-
nant charge peak given by Eq. �72� and a smaller spin peak
given by the Lorentzian in Eq. �76�. For modes with q
	T /vc1 that contribute to the integral in Eq. �78� but are not
in the regime �q3	1 /�s�T�, the Lorentzian is not a good
approximation for the line shape of the spin peak �which
must become asymmetric with a peak near the lower edge of
the two spinon spectrum�. However, the drag resistivity is
not sensitive to the detailed line shape since in this regime
the spin peak is much narrower than the charge peak for the
same q and what matters most is whether the spin peak for
the drag wire falls inside the charge peak for the drive wire.

Figure 5 illustrates the dependence of the drag resistivity
on the density mismatch between the two wires, param-

vs2/vc1

r(
v s

2
)/
r 0

 !"  !"#  !$  !$# % %! # %!% 

 ! %

 ! &

 ! '

 ! (

 ! #

FIG. 5. Drag resistivity as a function of the spin velocity vs2 in
the drag wire for three values of temperature: T / �kF1

2 /m�
=0.03,0.05,0.07 �bottom to top�. In this graph we set Ṽ0 / ��vF1�
=0.4 and Ṽ2kF

/ ��vF1�=0.1 in the weak coupling expressions for
vci, vsi, Kci, �−i, and ��i for wires i=1,2, using equations in Sec.
III. The value of r�vs2� is normalized by the value at zero-density
mismatch, r0=r�vs2=vs1�, for each temperature. Notice the peak in
r when the spin velocity of the drag wire matches the charge veloc-
ity of the drive wire, vs2�vc1.
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etrized by the ratio vs2 /vc1. The effect of spinon-assisted
Coulomb drag is observed as a small peak in the drag resis-
tivity when the wire densities are such that vs2�vc1. The
height of the peak relative to the dominant response at zero-
density mismatch �vs2�vs1� increases with increasing tem-
perature. This is because, as temperature increases, modes
with larger q, for which the spin peak in the DCSF have
relatively larger spectral weight, start to contribute to the
integral in Eq. �78�. On the other hand, increasing tempera-
ture also broadens the dominant peak observed at vs2�vs1,
which eventually obscures the smaller peak at vs2�vc1.
Therefore, it seems that the contribution of spinons to Cou-
lomb drag would most likely be observed as a shoulder in the
density dependence of the drag resistivity at intermediate
temperatures.

VI. CONCLUSIONS

We have studied the dynamic charge response for spin-1/2
fermions in one dimension beyond the usual linear disper-
sion approximation of Luttinger liquid theory. Unlike the
spinless case, the limits of small momentum q and weak

electron-electron interactions Ṽ0 do not commute. This is due
to the interplay of spin-charge separation and band-curvature
effects. The problem of calculating the dynamical charge-
structure factor for electrons with mass m in the regime q

	mṼ0 cannot be approached by perturbation theory in the
electron-electron interactions. We have used a bosonized
Hamiltonian and discussed the effects of irrelevant perturba-
tions associated with band curvature. We determined phe-
nomenological relations for the coupling constants of these
perturbations, including the ones that couple charge and spin
dynamics. The renormalization group equations for the irrel-
evant operator denoted by �3, which couples charge and spin
and mixes right- and left-moving spin modes, shows that its
effective coupling constant has a nontrivial logarithmic scal-
ing in the low-energy limit.

Based on a picture in which collective charge and spin
modes can be refermionized into spinless fermions �holons
and spinons, respectively� with nonlinear dispersion, we pre-
sented an approximate line shape for the dynamic charge-
structure factor valid in the long wavelength limit. As a func-
tion of frequency, the dynamic charge-structure factor has a
dominant charge peak associated with two-holon excitations,
whose width scales like q2. However, the spectral weight
extends down to a lower threshold described as a two-spinon
excitation. We calculated the exponent of the power-law sin-
gularity at this lower threshold and found that in the limit
q→0 it converges to the universal value �s−=−1 /2+O�q2�,
which depends only on spin SU�2� symmetry. We expect that
the spectral weight near this lower threshold is largest within
a two-spinon continuum, giving rise to a spin peak in the
charge-structure factor. There is also a tail of the spin peak
above the two-spinon continuum. The coupling between spin
and charge in the vicinity of the charge mass shell gives rise
to a decay rate for the holon at order q3. This decay rate is
responsible for rounding-off singularities at intermediate
thresholds such as the edges of the two-holon continuum,
regardless of the integrability of the model.

At finite temperature, an important difference between
charge and spin excitations is that the latter are damped by
diffusion. In the dynamic charge-structure factor this effect is
manifest in the Lorentzian broadening of the spin peak in the
regime where the spin current decay rate is large compared
to the band-curvature energy scale for the spinons.

These results allowed us to calculate the Coulomb drag
response between two quantum wires, taking into account
the spin degree of freedom. In comparison with the result for
spinless fermions studied in Ref. 10, there is an additional
effect �spinon-assisted Coulomb drag� due to spin-charge
coupling: at low temperatures the drag resistivity as a func-
tion of density mismatch has a peak when the charge velocity
of one wire matches the spin velocity of the other. The tem-
perature dependence of this drag peak has signatures of spin
diffusion.

Note added. After this work had been submitted, Ref. 35
appeared with related results for the exponent of edge singu-
larities at arbitrary momenta.
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APPENDIX: CALCULATION OF THE LOWER-EDGE
EXPONENT

We provide details for the calculation of the exponent of
the power-law singularity in the DCSF at �=�s−�q� at zero
temperature. While the asymptotic value �s−�q→0�=−1 /2 is
universal and depends only on SU�2� symmetry, following
the argument of Ref. 25, we also obtain the q2 correction due
to spin-charge coupling.

As mentioned in Sec. IV C, the lower edge of the spec-
trum is the same for the DCSF and for the DSSFs, defined as

Sab�q,�� = �
0

L

dxe−iqx�
−�

+�

dtei�t�Sa�x,t�Sb�0,0�� . �A1�

Here S�x�=
†�x� �
2
�x�, with � the vector of Pauli matrices,

is the spin-density operator. Its long-wavelength components
are represented by S=JL+JR. For fixed q, the lower thresh-
old below which the DSSFs �both longitudinal and trans-
verse� vanish is controlled by a deep spinon excitation with
energy �s−�q�=�s�q�.

The components of S satisfy SU�2� commutation relation


Sa�x�,Sb�x��� = i�abcSc�x���x − x�� . �A2�

We will refermionize the spin density to spinless fermions.
This can be done using an inverse Jordan-Wigner transfor-
mation in the continuum

Sz�x� = 
s
†�x�
s�x� + const., �A3�
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S+�x� = 
s
†�x�ei��−�

� dx���x−x��Sz�x��, �A4�

where 
s is a spinless fermionic spinon field, which obeys
anticommutation relations �
s�x� ,
s

†�x���=��x−x��, and
��x� is the left-continuous Heaviside step function with
��0�=0.

A generic spin Hamiltonian that is a function of the local
spin density and respects SU�2� symmetry takes the form

Hs = C1S · S + C2�xS · �xS + ¯ , �A5�

where ¯ stands for higher order irrelevant operators. By
means of Eqs. �A3� and �A4�, this maps onto a model of
interacting spinons. The precise form of the spinon Hamil-
tonian is not essential here but it must be such that in the low
energy limit it yields the same equal-time correlation func-
tions as the spin part of the Luttinger model in Eq. �7�. This
is directly accomplished if the model in Eq. �7� is recovered
by bosonization of 
s, analogously to the bosonization of the
XXZ model.23 In this approach, the SU�2� symmetric model
corresponds to strong interactions between spinons. Here we
assume that the effective model for the spinons in the metal-
lic case can be approached in the same way as the effective
model for the Heisenberg spin chain, namely, by starting
from a generalized model of weakly interacting spinless fer-
mions where we can expand the dispersion about the Fermi
points to bosonize the low-energy degrees of freedom. SU�2�
symmetry is only imposed at the end, on the results for the
spin-spin correlation functions, to fix the parameters of the
effective model. 
It is conceivable that the strength of the
spinon-spinon interaction could be tuned in a microscopic
model for a metal with spin U�1� symmetry and that such
weakly interacting limit could be realized.� In addition to the
interactions in the effective spinon model, we must account
for the coupling to gapless charge modes. For the purpose of
deriving the exponent at the spinon edge, the latter can be
described by bosonic fields �R/L

c at all steps and need not be
refermionized. The spin-charge coupling is then equivalent
to spin-phonon coupling in spin chains.

Let us consider that in the ground state the spinons form a
Fermi sea with a particle-hole symmetric band �due to spin
inversion symmetry Sz→−Sz�. The elementary Sz=0 excita-
tions are particle-hole pairs in the spinon Fermi sea. Simi-
larly, there are particle-hole excitations in the holon Fermi
sea but in our low-energy effective model for the lower edge
these are treated as charge bosons �since we can neglect band
curvature for the holons�. This picture is supported by the
Bethe ansatz solution of the Yang-Gaudin or Hubbard mod-
els. We assume that we can start from a model of noninter-
acting spinons with dispersion �s,R/L

�0� �k�� � �vs
�0�k−��0�k3

+¯� about the Fermi points �kF. That the spinon Fermi
wave vector is given by kFs=kF follows from the periodicity
of the spin-excitation spectrum, which is gapless at momen-
tum 2kF.28 Another interpretation is that in this approach the
number of spinons

�
0

L

dx
s
†�x�
s�x� = kFsL/� = N/2, �A6�

is fixed by the condition that the state constructed by adding
�removing� N /2 spinons to the ground state is a fully polar-

ized state with N spins up �N spins down�, which no more
spinons can be added to �removed from�.

Expanding the spinon field about �kF, 
s	eikFx�sR
+e−ikFx�sL, we can write a phenomenological Hamiltonian
density of the form

H = Hs + Hc + Hcs, �A7�

where

Hs = �sR
† �− ivs

�0��x + i��0��x
3��sR + �sL

† �ivs
�0��x − i��0��x

3��sL

+ Hs
int �A8�

is the spinon Hamiltonian with spinon-spinon interactions
contained in Hs

int, Hc is the charge Hamiltonian given by the
charge part of Eq. �7�, and Hcs contains spinon-holon inter-
actions. Due to spinon particle-hole symmetry, the latter can
only contain irrelevant operators �dimension three and
higher�, for instance, �s,R/L

† �x�s,R/L�x�R/L
c .

The parameters vs
�0� and ��0� are renormalized by interac-

tions �both spinon-spinon and spinon-holon�. We denote the
parameters of the exact spinon dispersion by vs and �. As
usually done for vs, the exact � can be extracted from the
Bethe ansatz solution in the case of integrable models. For
repulsive electron-electron interactions, we expect vs�vc,
where vc is the exact charge velocity. In this case, the lower
edge of the spectrum of any dynamical correlation function
at small momentum q �such that ��q2�	vs�vc� is controlled
by the spinon branch line, with a single “deep spinon” with
energy �s�q���sR�q��vsq−�q3 and a certain number of
spinon or holon excitations at the Fermi points.

Whether or not the band curvature of the spinon disper-
sion can be neglected in the calculation of dynamical quan-
tities depends on the frequency range of interest.7 Far enough
from the threshold, for ��−�s�q����q3, we are allowed to
drop the band curvature operators and the dynamics is cap-
tured by Luttinger liquid theory. We can bosonize �s,R/L in

the standard way,23 using �s,R/L	e−i�2�$R/L
s

/�2��, with chi-
ral bosonic fields $R/L

s and � a short distance cutoff. The
quadratic Hamiltonian in terms of spin bosons is diagonal-
ized by a transformation to

�L
s � �R

s = K��1/2��$L
s � $R

s � , �A9�

where K is the Luttinger parameter for the spinons. The latter
is fixed by SU�2� symmetry. In Abelian bosonization, we
write Sz	�x�R

s −�x�L
s , which has scaling dimension 1. For

S+, we bosonize the fermion and string operators in Eq. �A4�
and obtain

S+ 	 e−i�2���K−�1/2�K���R
s
ei�2���K+�1/2�K���L

s
, �A10�

which has scaling dimension K+1 /4K. Demanding that this
dimension is equal to 1 gives K=1 /2.

On the other hand, for ��−�s�q��	�q3, the behavior of
dynamical correlation functions is sensitive to the band cur-
vature energy scale. In this regime, it is important to consider
that spinons created near the threshold with energy �s�q�
travel with a different velocity than spinons at the spinon
Fermi surface. It has become standard to treat this type of
problem using quantum impurity models in analogy with the
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x-ray edge singularity.16 In order to describe the deep spinon
threshold, we expand the spinon field with low and high
energy subbands

�sR 	 �sr + e−iqxds1
† + eiqxds2. �A11�

�In the main text we considered only one type of d-particle
for simplicity.� The subband momentum cutoff is taken to be
small compared to q. For q
0, we consider deep holes with
momentum about kF−q and high-energy particles with mo-
mentum about kF+q. These two types of excitations are de-
generate as a consequence of particle-hole symmetry. The
low energy �sr and �sl fields are then bosonized while ds1,2
are treated as mobile impurities. We denote by �r/l

s the chiral
spin boson fields with the reduced cutoff at scale q. The
interactions among low and high energy spinons and low-
energy charge bosons can be described by the effective
Hamiltonian density

H = Hc + Hs,� + Hd + Hsd + Hcd. �A12�

Here Hc is the free charge boson Hamiltonian with reduced
cutoff at scale q �fields denoted by �r/l

c �. In the spin-only part
of H

Hs,� =
vs

2

��x�r

s�2 + ��x�l
s�2� �A13�

is the Luttinger model for low energy spin excitations �here
written in Abelian bosonization form�,

Hd = ds1
† 
�s�q� − iu�x�ds1 + �1 → 2� �A14�

is the kinetic energy of the high-energy spinons with u
=u�q� the corresponding exact velocity and

Hsd =
1

�4�
�Vl�x�l

s − Vr�x�r
s��ds2

† ds2 − ds1
† ds1� �A15�

is the coupling between high-energy spinons and low-energy
spin bosons. The amplitudes Vr and Vl will be determined
below.10,24 Note that Hsd is invariant under the particle-hole
transformation �s,R/L→�s,R/L

† , which takes �r/l
s →−�r/l

s ,
ds1↔ds2. Here we have neglected the backscattering opera-
tor g in Eq. �7�, which becomes marginal at the SU�2� point;
however, we point out that it might be important for loga-
rithmic corrections to edge singularities, which are known to
exist for the DSSF of the Heisenberg spin chain.26 The spin-
charge coupling in H is given by

Hcd =
1

�2�Kc

�Vl
c�x�l

c − Vr
c�x�r

c��ds1
† ds1 + ds2

† ds2� .

�A16�

The amplitudes Vr/l
c in Eq. �A16� stem from operators such as

�sR
† �x�sR�x�r/l

c , taking the high-energy mode in the expansion
of �R. As a result, Vr/l

c scale like 	q. The relation to the
parameters in Eq. �50� is Vl/r

c = ��2Kc�q��� .
Hamiltonian H can be diagonalized by a unitary transfor-

mation of the form H̃=UHU† where U=U1U2 with

U1,2 = e−i�dx���r�r
s+�l�l

s/��+�r
c�r

c+�l
c�l

c/�2�Kc�ds1,2
† ds1,2 �A17�

with

�l/r = −
Vl/r

2�vs � u�
, �l/r

c = −
Vl/r

c

vc � u
� −

Vl/r
c

vc � vs
.

�A18�

This transformation takes

ds1,2 → d̃s1,2e−i���r�r
s+�l�l

s/��+�r
c�r

c+�l
c�l

c/�2�Kc�, �A19�

where d̃s1,2 are free �up to irrelevant operators�. The �’s are
interpreted as phase shifts at the spinon and holon Fermi
points due to the creation of a high-energy spinon.

The exponents for the edge singularities are then calcu-
lated using the methods of Refs. 16 and 24. The threshold for
the longitudinal DSSF Szz�q ,�� is given by the correlation
function for the operator that creates a particle-hole pair of
spinons with a hole at kF and a particle at kF+q �or equiva-
lently a hole at kF−q and a particle at kF�

Bz
† = ds2

† �sr 	 d̃s2
† e−i�2���r�r

s+�l�l
s+�r

c�r
c+�l

c�l
c� �A20�

with

�r =
1
�2


3

2
−

�r

�
� ,

�l =
1
�2


1

2
−

�l

�
� �A21�

and

�r/l
c = −

1

2�Kc

�r/l
c

�
. �A22�

Using Eq. �A20�, we calculate the Fourier transform of the
correlation function �Bz�x , t�Bz

†�0,0�� and find a power-law
singularity Szz�q ,��	��−�s−��zz with exponent

�zz = − 1 + ��r�2 + ��l�2 + ��r
c�2 + ��l

c�2

= − 1 +
1

2

3

2
−

�r

�
�2

+
1

2

1

2
−

�l

�
�2

+
1

4Kc
�
�r

c

�
�2

+ 
�l
c

�
�2� . �A23�

The last term amounts to an orthogonality catastrophe con-
tribution to the exponent due to coupling of the ds1,2 particles
to gapless charge modes.

Now consider the transverse DSSF S+−�q ,��. In this case
the operator Eq. �A4� creates a particle and a string

B+
†�x� 	 ds2

† e−i��/2�$l
s−$r

s� 	 d̃s2
† e−i�2���r��r

s+�l��l
s+�r

c�r
c+�l

c�l
c�

�A24�

with
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�r� =
1
�2


1

2
−

�r

�
�, �l� =

1
�2


−
1

2
−

�l

�
� . �A25�

The Fourier transform of the correlation function
�B+�x , t�B+

†�0,0�� leads to S+−�q ,��	��−�s−��+− with the
exponent

�+− = − 1 +
1

2

1

2
−

�r

�
�2

+
1

2

1

2
+

�l

�
�2

+
1

4Kc
�
�r

c

�
�2

+ 
�l
c

�
�2� . �A26�

SU�2� symmetry implies that �zz=�+− but this is only one
equation. However, we can actually get infinitely many equa-
tions by imposing SU�2� symmetry for the singularities that
differ from the above by zero-energy excitations in which
spinons are transferred between the Fermi points. These are
created by electron backscattering processes in the language
of spin-1/2 fermions, which are Umklapp processes for
spinons

��sr
† �x�sr

† �sl�x�sl�n 	 e−i�4�n��l
s−�r

s�, �A27�

where n is an integer 
n�0 on the right-hand side of Eq.
�A27� corresponds to the Hermitian conjugate of the left-
hand side�. The excitations that differ in momentum by 2nkF
have thresholds at the same frequency �s−�q� because the
spin spectrum is periodic in momentum with period 2kF. The
exponents for �q−2nkF�	kF are given by

�zz,n = − 1 + ��r,n�2 + ��l,n�2 + ��r
c�2 + ��l

c�2,

�+−,n = − 1 + ��r,n� �2 + ��l,n� �2 + ��r
c�2 + ��l

c�2,

where

�r,n =
1
�2


− 2n +
3

2
−

�r

�
� ,

�l,n =
1
�2


+ 2n +
1

2
−

�l

�
� ,

�r,n� =
1
�2


− 2n +
1

2
−

�r

�
� ,

�l,n� =
1
�2


+ 2n −
1

2
−

�l

�
� . �A28�

The condition �zz,n=�+−,n is satisfied for all n if and only
if �r /�=�l /�=1 /2. With this result, the exponent in the
lower edge of the DSSFs �or the DCSF� for q	kF becomes

�s− = �zz = �+− = −
1

2
+

1

4Kc
�
�r

c

�
�2

+ 
�l
c

�
�2� .

�A29�

With �l/r
c given in Eq. �A18� and Vl/r

c = ��2Kc�q��� fixed as
explained in Sec. IV C, we obtain the final result in Eq. �56�.
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